# National technical training program (NTTP)—Examples of prerequisite exam questions

The following questions were developed based on previous exam versions. Measurement Canada has chosen to release these questions so that potential alternative service providers may have access to questions similar to those that will appear in the actual Candidate Evaluation Prerequisites Exam. These sample questions reflect only a small part of the range of questions which might be asked to measure a student's basic mathematics and reading skills.

• Circle only one answer per question.
• No marks are deducted for wrong answers.
• Each question has a value of two points.
• Calculators are permitted.
• The use of a laptop computer, cellular telephones and smartphones is not permitted in the exam room.
• A pass mark of 70% is required.
• You are allotted 90 minutes to complete the exam.
Solve each problem.
1. 524.1 is 280% of what?
1. 505.8
2. 187.2
3. 146748
4. 1467.5
5. 50580
2. 423 is 65% of what?
1. 650.8
2. 9.5
3. 945
4. 27495
5. 101
3. 904 is 210% of what?
1. 248.7
2. 2.5
3. 148
4. 71.1
5. 430.5
4. What percent of 981 is 828?
1. 192.8%
2. 118.5%
3. 84.4%
4. 1.36%
5. 73.4%
5. What is 44% of 2?
1. 0.88
2. 393.8
3. 226800
4. 4.5
5. 88
1.
b
2.
a
3.
e
4.
c
5.
a
Find each product.
1. (p+ 2)(p− 2)
1. p² − 1
2. p² + 4p+ 4
3. p² − 4p+ 4
4. p² − 4
5. p² + 10 p + 25
2. (r+ 4)(r− 4)
1. r + 4
2. r² − 4r + 4
3. r² − 16
4. r² + 8r + 16
5. r² + 4r + 4
3. (m − 4)(m+ 4)
1. m² − 1
2. m² + 8m+ 16
3. m² − 25
4. m² − 16
5. m² − 8m+ 16
4. (m − 2)²
1. m² − 4
2. m² + 4
3. m² + 6m+ 9
4. m² − 9
5. m² − 4m+ 4
5. (b + 4)²
1. b² − 16
2. b² + 8b + 16
3. b² + 16
4. b² − 9
5. b² + 4b + 4
6. (−20)(−13)
1. −260
2. 265
3. 268
4. 260
5. −33
7. (9)(−10)
1. 90
2. −84
3. −1
4. −90
5. −98
8. (−4)(−6)
1. 36
2. 12
3. 34
4. 24
5. 7
9. (−14)(16)
1. −108
2. −224
3. −220
4. −210
5. 2
10. (−14)(2)
1. −39
2. −47
3. −28
4. 28
5. −12
1.
d
2.
c
3.
d
4.
e
5.
b
6.
d
7.
d
8
d
9.
b
10.
c
Solve the following:
1. How is 68.6 × 10−6 expressed in decimal notation?
1. −0.000 068 6
2. 0.000 686
3. 0.000 068 6
4. 0.000 006 86
5. −0.000 006 86
2. How is 0.000000584 expressed in scientific notation?
1. 58.4 × 10-6
2. 58.4 × 10-8
3. 5.84 × 10-8
4. 5.84 × 108
5. 0.584 × 10-6
3. 35 L − 620 mL
1. 34.380 L
2. 3.438 0 L
3. 35 620 mL
4. 3 438.0 mL
5. 35.620 L
4. 302 mL + 200 L
1. 20 302 L
2. 302.2 L
3. 200.302 mL
4. 302 200 mL
5. 200 302 mL
5. 3 kg − 210 mg
1. 2.999 99 kg
2. 2 999.79 g
3. 2 999.79 mg
4. 2 790 g
5. 3 002.10 g
6. A 40 L measure is reduced by 0.29%, and the measure obtained is then increased by 0.42%. What is the new measure to the nearest hundredth in millilitre (mL)?
1. 397.26 mL
2. 39 726.49 mL
3. 400 515.13 mL
4. 4 005.15 mL
5. 40 051.51 mL
7. To convert pounds into kilograms, we use a conversion factor of 0.453 592 kg. If something weighs 546.39 kg, how much does it weigh in pounds? Round to the nearest hundredth.
1. 247.84 pounds
2. 2 478.38 pounds
3. 1 204.58 pounds
4. 12 045.85 pounds
5. 120.46 pounds
8. To convert pounds into kilograms, we use a conversion factor of 0.453 592 kg. If something weighs 35 pounds, how much does it weigh in grams? Round to the nearest hundredth.
1. 15 875.72 g
2. 1 587.57 g
3. 158 757.25 g
4. 158.76 g
5. 1 587 572.51 g
9. A scale's reading shows 602.9 kg when a 601 kg proof mass (actual weight) is placed on it. Calculate the percentage of error (the answer has been rounded).

% error = ((value displayed − value of proof mass) ÷ value of proof mass) × 100

1. 1.11%
2. 1.38%
3. 0.28%
4. 0.32%
5. 0.99%
10. When a 10 kg weight is placed on a scale ten different times, the following readings are obtained: 10.034, 9.998, 10.022, 10.205, 9.865, 10.150, 10.004, 9.999, 10.003 and 10.015. What is the average of the readings (the answer has been rounded)?
1. 10.00
2. 10.03
3. 9.99
4. 10.10
5. 10.08
1.
c
2.
b
3.
a
4.
e
5.
b
6.
e
7.
c
8
a
9.
d
10.
b
Simplify each expression.
1. −2(3 + 4m) + 3
1. −4 − 8m
2. −3 − 8m
3. −8m + 45
4. −6m + 43
5. −8m + 43
2. 6(−4m + 3) + 5m
1. 8 − 20m
2. −19m + 18
3. 2 − 20m
4. 1 + 8m
5. −1 + 8m
1.
b
2.
b
Evaluate each expression.
1. 28 − (−1) − 3
1. 66
2. 49
3. 31
4. 32
5. 26
2. 16 + 17 − (−36)
1. 82
2. 86
3. 57
4. 35
5. 69
3. (−32) + 47 + 24
1. 43
2. 54
3. 39
4. −7
5. −9
4. (−40) − 8 − 23
1. −58
2. −66
3. −71
4. −84
5. −101
5. (−42) + 14 − (−20)
1. 11
2. 24
3. −2
4. 38
5. −8
6. 29 − 38 − 4
1. −5
2. −57
3. 16
4. −13
5. −35
7. (−25) − 34 + 20
1. −87
2. −76
3. −58
4. −86
5. −39
8. 42 − 40 − 40
1. −11
2. −15
3. −38
4. −87
5. −65
9. 6 ÷ 3 + 1
1. 3
2. 1
3. 5
4. 6
5. 9
10. 4 + 2 − 1
1. 9
2. 4
3. 10
4. 5
5. 2
11. 6 − (5 − 4)
1. 9
2. 1
3. 8
4. 7
5. 5
1.
e
2.
e
3.
c
4.
c
5.
e
6.
d
7.
e
8
c
9.
a
10.
d
11.
e
Find each percent change. State if it is an increase or a decrease.
1. From 32 to 102
1. 70% decrease
2. 218.8% increase
3. 70% increase
4. 218.8% decrease
5. 318.8% increase
2. From 207 to 114
1. 78.9% increase
2. 55.1% decrease
3. 44.9% decrease
4. 81.6% decrease
5. 81.6% increase
3. From 335 to 49
1. 286% increase
2. 286% decrease
3. 14.6% decrease
4. 85.4% decrease
5. 583.7% decrease
4. From 59 to 9
1. 15.3% decrease
2. 84.7% decrease
3. 50% decrease
4. 655.6% decrease
5. 50% increase
5. From 99 to 45
1. 54% increase
2. 120% increase
3. 220% decrease
4. 54.5% decrease
5. 39.1% decrease
6. From 20.5 to 3
1. 14.6% decrease
2. 683.3% decrease
3. 85.4% increase
4. 85.4% decrease
5. 583.3% increase
7. From 62 to 27
1. 35% increase
2. 56.5% increase
3. 43.5% decrease
4. 35% decrease
5. 56.5% decrease
1.
b
2.
c
3.
d
4.
b
5.
d
6.
d
7.
e
Date modified: