Sélection de la langue

Search

Sommaire du brevet 2466114 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2466114
(54) Titre français: EXTRACTION CONTINUE DE GISEMENTS METALLIFERES SOUTERRAINS A VEINE ETROITE PAR FRAGMENTATION DE ROCHE THERMIQUE
(54) Titre anglais: CONTINUOUS EXTRACTION OF UNDERGROUND NARROW-VEIN METAL-BEARING DEPOSITS BY THERMAL ROCK FRAGMENTATION
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • E21C 37/16 (2006.01)
(72) Inventeurs :
  • FECTEAU, JEAN-MARIE (Canada)
  • POIRIER, SYLVIE (Canada)
  • LAFLAMME, MARCEL (Canada)
  • CHAMPOUX, GILL (Canada)
(73) Titulaires :
  • HER MAJESTY, THE QUEEN, IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTE
  • HYDRO-QUEBEC
(71) Demandeurs :
  • HER MAJESTY, THE QUEEN, IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTE (Canada)
  • HYDRO-QUEBEC (Canada)
(74) Agent: MACRAE & CO.
(74) Co-agent:
(45) Délivré: 2012-03-20
(22) Date de dépôt: 2004-05-03
(41) Mise à la disponibilité du public: 2005-11-03
Requête d'examen: 2009-05-04
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

La présente invention concerne une méthode d'extraction de minéraux d'un gisement à veine étroite par fragmentation thermique. La méthode consiste à localiser la veine et à en déterminer l'étendue afin de former les limites d'une taille. L'accès à la taille est préparé en formant un panneau muni d'une galerie supérieure et d'une galerie inférieure. Le matériel de fragmentation thermique, qui comprend un brûleur, est installé à partir de la galerie supérieure. Le brûleur se déplace le long de la surface du panneau en mouvements de balayage, alors que les débris de roche broyée de la surface du panneau rocheux sont recueillis. Il est possible de réaliser plusieurs panneaux pour le traitement, les panneaux inférieurs étant traités avant les panneaux supérieurs, par l'excavation d'un sous-niveau pour séparer les panneaux inférieurs et supérieurs.

Abrégé anglais

A method for extracting minerals from a narrow-vein deposit by thermal fragmentation is provided. The method includes locating the vein and determining the extent thereof to form the boundaries of a stope. Access to the stope is prepared by forming a panel having an upper drift and a lower drift. Equipment for thermal fragmentation, including a burner, is installed from the upper drift. The burner moves along the panel surface in a sweeping motion, while rock chips spalled from the rock panel surface are collected. Multiple panels for processing can be realised, with lower panels being processed before upper panels, by excavating a sub- level to separate the lower and upper panels.
Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS: 1. A method of extracting a mineral from a narrow-vein deposit, comprising the steps of. locating the vein; ascertaining the extent of the vein and establishing an extraction zone of material which extends beyond the extent of the vein and forms boundaries of a stope; preparing access to the stope by: developing a lower stope access and an upper stope access near the middle of the stope to divide the stope in two; developing a lower drift extending away from the lower stope access; developing an upper drift extending away from the upper stope access; developing a service raise connecting the upper stope access to the lower stope access; and developing a slot raise connecting the upper drift to the lower drift, thereby creating two adjacent panels; providing a burner capable of inducing thermal fragmentation of the material of the extraction zone; for each panel, moving the burner along a surface of the panel in a sweeping motion so as to induce thermal fragmentation of the material from the surface; and collecting the fragmented material. 2. The method of claim 1 further comprising the steps of moving the burner at a controlled rate of travel along the panel surface; and adjusting the burner to maintain a predetermined distance from the panel surface. 3. The method of claim 1 or 2 wherein the sweeping motion results from moving the burner through a predetermined pattern over the entire panel surface. 10 4. The method of claim 1 further comprising the step of installing the burner in the upper drift. 5. The method of claim 3 wherein the controlled pattern results in the burner moving along the panel surface from the upper drift to the lower drift and progressively from one sidewall of the panel to a second sidewall of the panel. 6. The method of any one of claims 1 to 5 wherein collecting the fragmented material comprises the steps of installing a container in the lower drift below the panel surface to catch fragmented material falling from the panel surface; moving the container as the burner advances in the mineralization and removing the fragmented material from the container for transport to an intended destination. 7. The method of claim 6 wherein the fragmented material is removed from the container with a vacuum system. 8. The method of any one of claims 1 to 7 further comprising the step of developing a sub-level extending away from the service raise, dividing the two adjacent panels each into two upper panels and two lower panels. 9. The method of claim 8 further comprising the steps of: processing the lower panels first with the burner installed from the sub-level and then processing the upper panels with the burner installed from the upper drift. 10. The method of any one of claims 1 to 9 wherein said burner is a plasma torch. 11 11. A method of extracting a mineral from a narrow-vein deposit, comprising the steps of: locating the vein; ascertaining the extent of the vein and establishing an extraction zone of material which extends beyond the extent of the vein and forms boundaries of a stope; preparing access to the stope by forming a panel having an upper drift and a lower drift: providing a burner as a source of heat capable of inducing thermal fragmentation of the material of the extraction zone; installing the burner in the upper drift; moving the burner across the surface so that heat is applied directly to the surface of the material so as to cause thermal fragmentation of the material on the surface; and collecting the fragmented material. 12. A method of extracting a mineral from a narrow-vein deposit, comprising the steps of: locating the vein; ascertaining the extent of the vein and establishing an extraction zone of material which extends beyond the extent of the vein and forms boundaries of a stope; preparing access to the stope by forming a panel having an upper drift and a lower drift: providing a burner as a source of heat capable of inducing thermal fragmentation of the material of the extraction zone; moving the burner across the surface so that heat is applied directly to the surface of the material so as to cause thermal fragmentation of the material on the surface; and collecting the fragmented material by: installing a container in the lower drift below the panel surface to catch fragmented material falling from the panel surface; moving the container as the burner advances in the mineralization and removing the fragmented material from the container for transport to an intended destination. 12 13. The method of claim 12 wherein the fragmented material is removed from the container with a vacuum system. 14. The method of any one of claims 11 to 13 further comprising the steps of : moving the burner at a controlled rate of travel along the panel surface; and adjusting the burner to maintain a predetermined distance from the panel surface. 15. The method of any one of claims 11 to 14 wherein the sweeping motion results from moving the burner through a predetermined pattern over the entire panel surface. 16. The method of claim 15 wherein the controlled pattern results in the burner moving along the panel surface from the upper drift to the lower drift and progressively from one sidewall of the panel to a second sidewall of the panel. 17. The method of any one of claims 11 to 16 wherein said burner is a plasma torch. 13
Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.

CA 02466114 2004-05-03 CONTINUOUS EXTRACTION OF UNDERGROUND NARROW-VEIN METAL-BEARING DEPOSITS BY THERMAL ROCK FRAGMENTATION Field of the Invention The present invention relates to a method for extracting minerals from a narrow-vein mining deposit through utilization of a thermal-induced rock fragmentation to channel out the mineralization. Background of the Invention Exploitation of narrow-vain deposits represents great challenges. Highly selective mining methods for this type of exploitation are associated With high operational constraints that interfere with mechanization. Conventional methods require a substantial amount of skilled manpower, which is becoming a scarce commodity. High operational costs results in the profitability of these deposits to be rather risky. In order to ensure the survival of this type of exploitation, it is crucial to develop innovative equipment and mining methods. The mineral inventory of a mining operation is classified into reserves and resources, reserves being the economically mineable part. Resources involve a level of geological knowledge that is usually insufficient to enable an appropriate economic evaluation or, in some cases, the estimated grade is lower than the economic grade. In recent years, the long-hole mining method has been used in soave narrow- vein ore mining operations. Such a method is not always suitable to the operation conditions. Implementation of the method involves large blasts that damage the rock mass with several fractures that cause rock face instability resulting in frequent fall of waste rock. This waste mixes up with the broken ore and adds to the planned dilution in reserve estimate. Like the ore, this waste rock must be mucked and processed, significantly increasing operation costs. SUMMARY OF THE INVENTION One aspect of the present invention relates to a method for extracting minerals from a narrow-vein deposit. Location of the vein and determination of the extent thereof forms the boundaries of the stope. Access to the stope is prepared by excavating an upper drift and a 1 CA 02466114 2004-05-03 lower drift to form a panel therebetween. Equipment and a burner are installed from the upper drift. The burner is moved along a panel surface in a predetermined pattern, while spalled rock chips from the panel surface are collected at the lower drift. By providing highly selective extraction of ore, thermal fragmentation allows for substantial savings on ore transportation, ore processing and on the environmental level by reducing the generated waste volume. Another aspect of the invention relates to a method of extracting minerals from narrow- vein deposit including the step of ascertaining the extent of the vein and establishing an extraction zone of material, which extends beyond the extent of the vein. A surface of the extraction zone is then exposed after which a source of heat is provided, capable of inducing thermal fragmentation of the material in the extraction zone. The source of heat is moved across the surface while maintaining sufficient proximity to cause thermal fragmentation of the material on the surface. The fragmented material is collected. Another aspect of this invention includes the use of a plasma torch for extraction of narrow-vein mineral deposits. The plasma torch is moved across a surface of the deposit, in a sweeping movement, at a rate which, while maintaining sufficient proximity of the plasma torch with the surface of the deposit, induces thermal fragmentation to a layer of the deposit. BRIEF DESCRIPTION OF THE DRAWINGS The following description will be more readily understood with reference to the drawings in which a preferred embodiment of the invention is illustrated. Figure lA is an elevational view of a cross-section of a stope, with Figure 1B being a plan view thereof, showing a first phase of the operation; Figure 2A is an elevational of a cross-section of a stope, with Figure 2B being a plan view thereof, showing a second phase of the operation; Figure 3A is an elevational of a cross-section of a stope, with Figure 3B being a plan view thereof, showing a third phase of the operation; Figure 4A is an elevational view of a cross-section of a stope, with Figure 4B being a plan view thereof, showing a fourth phase of the operation; Figure 5A is an elevational view of a cross-section of a stope, with Figure SB being a plan view thereof, showing a fifth phase of the operation; and 2 CA 02466114 2004-05-03 Figures 6A and 6B are schematic diagrams in plan view comparing thermal torch fragmentation method versus the prior art long-hole mining method. DESCRIPTION OF THE PREFERRED EMBODIMENTS A mining method generally consists of four distinct steps: drilling, blasting, mucking, and transport of the ore to the shaft for hoisting to the surface. The application of the method described herein enables a reduction in the required number of steps; drilling and blasting being replaced by a single step of continuous rock fragmentation. The present invention provides a method of using a burner to exploit underground narrow-vein metalliferous deposits by thermal fragmentation, through sweeping in a sequence across the height and width of the vein. Most of the items or equipment required to perform the method are in common usage in mining operations, except for the plasma torch equipment and a vacuum system to draw off the ore. A plasma torch is used as the source of heat by which thermal fragmentation or spalling of a surface layer of the deposit is induced. While other types of burners could be utilized, plasma torches are preferred as they do not produce the emissions that combustible fuel torches do. Plasma torches produce intense heat and the higher rate of heating expedites the thermal fragmentation process. The intense heat, however, necessitates the movement of the torch in a sweeping pattern to avoid localized fusion of the rock. Figures lA and 1B illustrate the general arrangement of a standard stope 10. In a first phase, cross-cuts 12,13 are developed to access the upper and lower levels of a mineralized block 14. These accesses 12,13 are planned to intercept mineralization at the block centre 16, thus separating the stope 10 in two. From the upper and lower accesses 12,13, upper and lower drifts 18,20 are developed in the ore. The plan view of Figure 1B shows the stope accesses 12,13 leading to the drifts 18,20. These drifts 18,20 represent the upper and lower limits of the stope 10 to be processed. Preferably, the maximum distance on either side of the stope access is limited to 50 meters, which will ensure proper efficiency of the vacuum devices and plasma torch. One skilled in the art would appreciate the distance may vary according to the limitations of different equipment. 3 CA 02466114 2004-05-03 After the stope accesses 12,13 and drifts 18,20 arecompleted , a~ service raise 22 is excavated at the block centre 16. The main purpose of the raise 22 is to enable workers to access sub-levels, transport equipment and to supply required ventilation, water, air and electric lines. From the service raise 22, a sub-level 24 is preferably excavated to reduce the vertical mining distance in order to easily follow the mineralization, which is generally not rectilinear over long distances.Slot raises 26,28 are also developed at each stope extremity to allow initial installation of the plasma torch equipment (not shown in Figures lA and 1B). Finally, small openings 30 are preferably excavated in the upper and lower stope cross-cuts accesses for the installation of the vacuum device and the equipment required to operate the plasma torch. The final arrangement of the various drifts and raises results in the mineral block 14 being sectioned into a plurality of panels 32. Preliminary tests that were performed on granite blocks demonstrated that rock is broken into small chips or fragments by moving a plasma torch along the rock surface. This rock- fraeturing through thermal fragmentation occurs as a result of thermal shock created by the plasma torch flame on contact with the rock surface. The generated chips have a dimension that is usually less than 2 cm. As shown in Figures 2A and 2B, burner equipment 34 is installed from the sub- level 24 or from the drift located above the section to be extracted. During fragmentation, the burner 36 is moved from top to bottom in a back-and-forth movement, as well as from left to right between the sidewalk of the panel. When the spalling efficiency diminishes, a mechanism associated with the equipment 34 brings the burner 36 closer to the rock face 38. Once the mechanism reaches a maximum extension, all of the equipment 34 is brought closer to the face 38 and spalling continues. Preferably the burner 36 is moved at a controlled rate through a predetermined pattern. As indicated above, the preferred embodiment of the stope 10 is separated into four panels 32 and each panel 32 is extracted consecutively in a predetermined sequence. After the extraction of a panel 32 as shown in Figure 3A, an opening is created between two drifts or, in the case of Figure 3A, between the lower drift 20 and the sub-level 24; consequently, it will be impossible to travel in the lower drift. Thus, extraction should begin in the lower panels 32a, 32b and then move upward. 4 CA 02466114 2004-05-03 As the burner 36 sweeps along the rock face 38, the rock chips 42 are extracted. Since this mining method is directed towards a highly selective ore extraction, the excavated rock volume is low while the grade of the rock is high. The low rock volume produced to be handle enables a simple mucking system to be implemented at a low cost. An example of such a system is shown in Figures 2A and 2B which uses a metal container 44 that can hold up to 8 tons of ore. The container 44 is positioned directly under the work face 38 at the base of the opening 40 to recover the falling rock fragments 42. The winch 52 hoists the container to follow the mining process. Afterwards, the accumulated ore is vacuumed by the vacuum system 46 through vacuum hoses 48 into a mine car 50.. It is suggestible to perform mucking twice per work shift, thereby eliminating the requirement of having a full-time employee on mucking operations. The mining sequence of the preferred stope embodiment is shown in Figures 2A to 5A. Firstly, the plasma torch equipment 34 is installed in the sub-level 24 above panel 32a, as shown in Figure 2A. The ore container 44 and the winch S2 are installed in the lower drift. The vacuum system 46 is located in the lower stope access 13 and a hose 48 of sufficient length is used to vacuum the accumulated ore from inside the container 44. The burner 34 is moved across the rock surface 38 in a repetitive sweeping movement to remove successive layers of rock 38, while the container 44 is moved in unison with the burner equipment 34 to continuously catch the falling rock fragments 42. Preferably, not the entire panel 32a is removed so as to leave a supporting pillar 54 (see Figure 3B). Once panel 32a is complete, the equipment 34 is transferred to the opposite lower panel 32b for use in a similar arrangement, as shown in Figure 3B. In order to extract upper panels 32c, 32d, the plasma torch equipment 34 is mobilized in the upper drift 18 and the mucking equipment is installed in the sub-level 24, as shown in Figures 4A and 5A. However, the opening 40 created during the extraction phases, as shown in Figures 2A and 3A, extends through the sub-level floor an approximate width of 45 cm, as shown in Figure 6A. Therefore, workers should be secured during their displacement, such as by securely tying themselves to a lifeline. Furthermore, depending on ground conditions, construction of a floor could be required to block access to the opening. CA 02466114 2004-05-03 The vacuum system 46 remains in the lower access 13 throughout the extraction of the stopel0 and the suction hose 48 is extended as required. As mentioned previously, the service raise 22 or slot raises 26,28 are used to move equipment inside the stope I0. The application of the thermal fragmentation method with a burner or plasma torch allows for high selectivity, the possibility of mechanization, continuous mining, immediate ore recovery, and elimination of the use of explosives. Figure 6A shows that the opening 40 formed with the present thermal fragmentation method is 4 times smaller than the opening 60 formed through traditional long-hole mining with explosives as seen in Figure 6B, therefore much less waste 62 is generated. The boundaries of the extraction zone 64 for the thermal fragmentation method, shown by dotted lines 66 in Figure 6A, which extend beyond the ascertained width 68 of the vein 70, can be much narrower than the required extraction zone 74 for the long hole blasting method, shown by dotted lines 76 in Figure 6B, which extend significantly beyond the ascertained width 78 of the vein 80, thus leading to greater amount of waste 62 in the mined ore. Furthermore, after the extraction, the walls 82 have more stability than walls 84 that have been massively fractured, as through long-hole blasting methods. Mineral recovery is immediate, as compared to conventional methods in which the mineral may remain underground in inventory for a period of time, sometimes being non-recoverable due to stope instability, which results in significant financial loss. As shown in Table l, selective mining allows for a substantial reduction in extracted tonnage. A smaller volume of rocks for handling and processing directly impacts operation costs. Moreover, a continuous penetration in the rock allows dynamic readjustment of the extraction in order to stay inside the mineralized zone and consequently avoid dilution from mining. The method of the present invention allows fox continuous extraction since the process do not generate large amount of gas compared with the explosives. A 7-day work schedule is therefore possible, rather than the typical 5-day work schedule currently employed in narrow- vein mines. Such a work schedule would increase annual production, thereby decreasing indirect operational and depreciation costs. 6 CA 02466114 2004-05-03 Table 1 - Comparison of thermal fragmentation with plasma torch and long-hole mining methnri~ Calculated Tonnage based Thermal Long-hole on a reserve block of 100 m by 45 m Fragmentation Grade in situ (ozls.ton) 1.70 1.70 Width in situ (cm) 30 30 OYe development Development tonnage (s.ton)6 506 8 130 Development grade (oz/s.ton)0.22 0.22 Mining Geological reserves (s.ton)3 166 2 965 Grade of geological reserves1.70 1.70 (g/t) Minimum width (cm) 45 180 Planned dilution 50% 500% Walls dilution 0% 35% Stope recovery 95% 85! Planned mining reserves 4 511 20 413 (s.ton) Mined grade 1.13 0.21 Mill recovery 95% 95% Produced ounces (stope 6 220 5 757 and develo ment Thermal fragmentation Long-hole Unit cost Total Unit cost Total $ls.ton $ $ls.ton $ _ 354 252 462 889 Development Mining cost ($It) 5$-~~ 262 564 19.00 387 852 , Mucking 5.00 22 557 4.00 81 653 Transport to mill (stope) 24 813 5.50 112 273 5.50 Transport to mill 5 35 785 5.50 44 714 50 . (development) Milling (stope) 10.37 46 783 12.20 249 042 Milling (development) 12.2079 377 12.20 99 183 TOTAL 826131 1 437 607 CAN$ per short ton 74.98 50.37 CAN$ per ounce 132.82 249.71 x "' .r(1:~5~:. .. 8~1: . v6z2.~31, Ext~erimental Setup A test case was conducted by elaborating a mining concept using thermal rock fragmentation with a plasma torch to mine extremely narrow veins. The test case was developed 7 CA 02466114 2004-05-03 according to commonly found stope dimensions in mining operations. A stope height of 45 meters was selected, which corresponds to the standard distance between two levels. For equipment operational reasons, the maximum length was fixed to 100 meters. Table 2 lists the details of development of the scope. Table 2 - Details of developments Width Height Length (m) (m) (m) Upper access 2.7 2.7 10 Lower access 2.7 2.7 10 Upper ore drift 2.4 2.4 100 Lower ore drift 2.4 2.4 100 Service raise 2.4 2.4 40 - _ -- 2.4 2.4 98 Sub-level Slot raises 1.8 1.8 76 Excavation for plasma torch 3.0 2.4 4.5 equipment 3.0 2.7 4.5 Excavation for vacuum One skilled in the art will appreciate that variations in the number of panels is possible. As an example, excavation could be performed in a single lowex panel 1 or 2 without forming or expanding to the upper panels 3 or 4. Another variation exists in the sweeping of the burner. The burner can, be swept from left to right or right to left, while progressing from the top of the stope panel to the bottom. Alternatively, sweeping can occur from top to bottom, while progressing from left to right or right to left. The pattern and rate of motion of the burner/plasma torch will be dependent on several factors, including but not limited to the physical dimensions of the deposit, the composition of the deposit, variations in the deposit, desired fragmentation rate/volume, type and output of the burner/plasma torch, etc. The rate and pattern can be predetermined through theoretical considerations and/or empirical evaluation of test samples. The rate and pattern can also be adapted dynamically during the process to ensure optimization of fragmentation. 8 CA 02466114 2004-05-03 Optimization does not necessarily mean increased fragment size, as fragment size can have an affect on the removal process in the case of vacuum removal, for example, or on subsequent processing steps. Volumetric removal rate (yield) is typically a better indicator of efficiency. Another embodiment of the present invention provides for automatic operation of the equipment. Thus, the operator can safely remain in a workplace outside of the stope, while the automatic equipment operates within the stope. Cameras can be used to monitor progress. Furthermore, automatic detection of surface edges could be employed, further reducing input required from an external operator and eliminating the need for cameras. In such an automatic system, the burner could be provided on a platform extending up from the floor of the lower drift. While there has been shown and described herein a method for continuous extraction of deposits in narrow-vein mining applications, it will be appreciated that various modifications and or substitutions may be made thereto without departing from the spirit and scope of the invention. 9
Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Accordé par délivrance 2012-03-20
Inactive : Page couverture publiée 2012-03-19
Inactive : Taxe finale reçue 2012-01-09
Préoctroi 2012-01-09
Un avis d'acceptation est envoyé 2011-07-15
Lettre envoyée 2011-07-15
Un avis d'acceptation est envoyé 2011-07-15
Inactive : Approuvée aux fins d'acceptation (AFA) 2011-07-07
Modification reçue - modification volontaire 2011-06-13
Modification reçue - modification volontaire 2011-06-07
Inactive : Dem. de l'examinateur par.30(2) Règles 2010-12-07
Lettre envoyée 2009-05-27
Toutes les exigences pour l'examen - jugée conforme 2009-05-04
Exigences pour une requête d'examen - jugée conforme 2009-05-04
Requête d'examen reçue 2009-05-04
Lettre envoyée 2006-10-12
Lettre envoyée 2006-10-12
Inactive : Renseignement demandé pour transfert 2006-10-11
Inactive : Supprimer l'abandon 2006-10-11
Inactive : Abandon. - Aucune rép. à lettre officielle 2006-08-04
Inactive : Transfert individuel 2006-08-02
Demande publiée (accessible au public) 2005-11-03
Inactive : Page couverture publiée 2005-11-02
Exigences de prorogation de délai pour l'accomplissement d'un acte - jugée conforme 2005-08-30
Lettre envoyée 2005-08-30
Inactive : Prorogation de délai lié aux transferts 2005-08-04
Inactive : CIB en 1re position 2004-07-20
Inactive : Lettre de courtoisie - Preuve 2004-06-15
Inactive : Demandeur supprimé 2004-06-08
Inactive : Certificat de dépôt - Sans RE (Anglais) 2004-06-08
Exigences relatives à une correction du demandeur - jugée conforme 2004-06-08
Inactive : Certificat de dépôt - Sans RE (Anglais) 2004-06-07
Demande reçue - nationale ordinaire 2004-06-07

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2011-04-08

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
HER MAJESTY, THE QUEEN, IN RIGHT OF CANADA AS REPRESENTED BY THE MINISTE
HYDRO-QUEBEC
Titulaires antérieures au dossier
GILL CHAMPOUX
JEAN-MARIE FECTEAU
MARCEL LAFLAMME
SYLVIE POIRIER
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessins 2011-06-06 3 109
Revendications 2011-06-06 4 126
Dessin représentatif 2012-02-20 1 29
Description 2004-05-02 9 511
Abrégé 2004-05-02 1 20
Revendications 2004-05-02 3 121
Dessins 2004-05-02 3 260
Dessin représentatif 2005-10-10 1 70
Certificat de dépôt (anglais) 2004-06-07 1 159
Demande de preuve ou de transfert manquant 2005-05-03 1 100
Rappel de taxe de maintien due 2006-01-03 1 110
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2006-10-11 1 105
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2006-10-11 1 105
Rappel - requête d'examen 2009-01-05 1 118
Accusé de réception de la requête d'examen 2009-05-26 1 175
Avis du commissaire - Demande jugée acceptable 2011-07-14 1 163
Correspondance 2004-06-07 1 29
Correspondance 2005-08-03 1 36
Correspondance 2005-08-29 1 18
Correspondance 2012-01-08 1 37