Sélection de la langue

Search

Sommaire du brevet 2812236 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2812236
(54) Titre français: COPPER ALUMINUM ALLOY MOLDED PART HAVING HIGH MECHANICAL STRENGTH AND HOT CREEP RESISTANCE
(54) Titre anglais: PIECE MOULEE EN ALLIAGE D'ALUMINIUM AU CUIVRE A HAUTE RESISTANCE MECANIQUE ET AU FLUAGE A CHAUD
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22C 21/12 (2006.01)
  • B22D 19/00 (2006.01)
  • C22C 21/16 (2006.01)
  • F02F 01/24 (2006.01)
(72) Inventeurs :
  • GARAT, MICHEL (France)
  • JEAN, DANNY (Canada)
  • MAJOR, JAMES FREDERICK (Canada)
(73) Titulaires :
  • RIO TINTO ALCAN INTERNATIONAL LIMITED
(71) Demandeurs :
  • RIO TINTO ALCAN INTERNATIONAL LIMITED (Canada)
(74) Agent: NORTON ROSE FULBRIGHT CANADA LLP/S.E.N.C.R.L., S.R.L.
(74) Co-agent:
(45) Délivré: 2018-03-27
(86) Date de dépôt PCT: 2010-12-07
(87) Mise à la disponibilité du public: 2011-07-14
Requête d'examen: 2015-12-04
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Français

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/FR2010/000812
(87) Numéro de publication internationale PCT: FR2010000812
(85) Entrée nationale: 2013-03-21

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
0906218 (France) 2009-12-22

Abrégés

Abrégé français

L'invention a pour objet une pièce moulée à haute résistance mécanique statique et à haute tenue au fluage à chaud, coulée en alliage d'aluminium de composition chimique suivante: Si : 0.02 - 0.50 %, Fe : 0.02 - 0.30 %, Cu : 3.5 - 4.9 %, Mn : < 0.70 %, Mg : 0.05 - 0.20 %, Zn : < 0.30 %, Ni : < 0.30 %, V : 0.05 - 0.30 %, Zr : 0.05 - 0.25 %, Ti : 0.01 - 0.35 %, autres éléments au total < 0.15 %; et 0.05 % chacun, reste aluminium. Elle concerne plus particulièrement les culasses de moteurs à combustion interne diesel ou essence suralimentés.

Abrégé anglais

The invention relates to a molded part having high mechanical strength and hot creep resistance, which is made of cast aluminum alloy having the following chemical composition: Si: 0.02 - 0.50 %, Fe: 0.02 - 0.30 %, Cu: 3.5 - 4.9 %, Mn: < 0.70 %, Mg: 0.05 - 0.20 %, Zn: < 0.30 %, Ni: < 0.30 %, V: 0.05 - 0.30 %, Zr: 0.05 - 0.25 %, Ti: 0.01 - 0.35 %, other elements totaling < 0.15% and 0.05% each, the remainder being aluminum. The invention also relates specifically to supercharged diesel or gasoline internal combustion engine cylinder heads.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.

13 Revendications 1. Pièce moulée à haute résistance mécanique statique à la température ambiante et à chaud et à haute tenue au fluage à chaud, coulée en alliage d'aluminium de composition chimique suivante, exprimée en pourcentages pondéraux : Si : 0.02 - 0.50% Fe : 0.02 ¨ 0.30% Cu : 3.5 ¨ 4.9% Mn : < 0.70% Mg : 0.05 ¨ 0.20% Zn : < 0.30% Ni : < 0.30% V : 0.05 ¨ 0.30% Zr : 0.05 ¨ 0.25% Ti : 0.01 ¨ 0.35% autres éléments au total < 0.15%, et inférieur à 0.05% chacun reste aluminium. 2. Pièce moulées selon la revendication 1, caractérisée en ce que le fluage à chaud est effectué à 300°C et plus. 3. Pièce moulée selon la revendication 1 ou 2, caractérisée en ce que la teneur en magnésium est comprise entre 0.07 ¨ 0.20%. 4. Pièce moulée selon l'une quelconque des revendications 1 à 3 caractérisée en ce que la teneur en magnésium est comprise entre 0.08 ¨ 0.20%. 5. Pièce moulée selon la revendication 4, caractérisée en ce que la teneur en magnésium est comprise entre 0.09 ¨ 0.13%. 14 6. Pièce moulée selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la teneur en cuivre est comprise entre 3.8 ¨ 4.9%. 7. Pièce moulée selon la revendication 6, caractérisée en ce que la teneur en cuivre est comprise entre 4.0 ¨ 4.8%. 8. Pièce moulée selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la teneur en vanadium est comprise entre 0.08 ¨ 0.25%. 9. Pièce moulée selon la revendication 8, caractérisée en ce que la teneur en vanadium est comprise entre 0.10 ¨ 0.20%. 10. Pièce moulée selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la teneur en zirconium est comprise entre 0.08 ¨ 0.20%. 11. Pièce moulée selon l'une quelconque des revendications 1 à 10, caractérisée en ce que la teneur en titane est comprise entre 0.05 ¨ 0.25%. 12. Pièce moulée selon la revendication 11, caractérisée en ce que la teneur en titane est comprise entre 0.10 ¨ 0.20%. 13. Pièce moulée selon l'une quelconque des revendications 1 à 12, caractérisée en ce que la teneur en silicium est comprise entre 0.02 - 0.20%. 14. Pièce moulée selon la revendication 13, caractérisée en que la teneur en silicium est comprise entre 0.02 - 0.06%. 15. Pièce moulée selon l'une quelconque des revendications 1 à 14, caractérisée en ce que la teneur en fer est comprise entre 0.02 ¨ 0.20%. 16. Pièce moulée selon la revendication 15, caractérisée en ce que la teneur en fer est comprise entre 0.02 - 0.12%. 17. Pièce moulée selon la revendication 15, caractérisée en ce que la teneur en fer est comprise entre 0.02% - 0.06%. 18. Pièce moulée selon l'une quelconque des revendications 1 à 17, caractérisée en ce que la teneur en manganèse est comprise entre 0.20 ¨ 0.50%. 19. Pièce moulée selon l'une quelconque des revendications 1 à 18, caractérisée en ce que la teneur en zinc est inférieure à 0.10%. 15 20. Pièce moulée selon la revendication 19, caractérisée en ce que la teneur en zinc est inférieure à 0.03%. 21. Pièce moulée selon l'une quelconque des revendications 1 à 20, caractérisée en ce que la teneur en nickel est inférieure à 0.10%. 22. Pièce moulée selon la revendication 21, caractérisée en ce que la teneur en nickel est inférieure à 0.03%. 23. Pièce moulée selon l'une quelconque des revendications 1 à 22 ayant subi un traitement thermique du type T7 ou T6. 24. Insert comprenant une pièce moulée selon l'une quelconque des revendications 1 à 23. 25. Insert selon la revendication 24, caractérisé en ce que ledit insert est essentiellement constitué par la pièce moulée. 26. Culasse comprenant une pièce moulée selon l'une quelconque des revendications 1 à 23 ou un insert selon l'une quelconque des revendications 24 et 25. 27. Procédé pour mouler un insert selon l'une quelconque des revendications 24 et 25 ou une culasse selon la revendication 26, comprenant les étapes consistant à : - fournir un moule formé à partir d'un agrégat et d'un liant hydrosoluble ; - couler l'alliage dans le moule ; - projeter de l'eau sur le moule de manière à désagréger le moule et à refroidir l'insert ou la culasse.
Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.

CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 1 Pièce moulée en alliage d'aluminium au cuivre à haute résistance mécanique et au fluage à chaud Domaine de l'invention L'invention concerne les pièces moulées en alliage d'aluminium au cuivre soumises à des contraintes mécaniques élevées et travaillant, au moins dans certaines de leurs zones, à des températures élevées, notamment des culasses de moteurs diesel ou essence suralimentés. Etat de la technique Sauf mention contraire, toutes les valeurs relatives à la composition chimique des alliages sont exprimées en pourcentages pondéraux. Les alliages couramment utilisés pour les culasses des véhicules de grande série automobile sont essentiellement des alliages au silicium (de 5 à 10 % de Si en général) contenant souvent du cuivre et du magnésium afin d'en augmenter les caractéristiques mécaniques, en particulier à chaud. Les principaux types utilisés sont les suivants : A1Si7Mg, A1Si7CuMg, AlSi(5 à 8)Cu3Mg, AlSi 10Mg, AlSi 1 OCuMg. Ces alliages sont utilisés avec différentes modalités de traitements thermiques : parfois à l'état état F sans aucun traitement, parfois à l'état état T5 avec un simple revenu, parfois à l'état T6 avec une mise en solution, une trempe et un revenu au pic de durcissement ou légèrement en- dessous, et souvent à l'état T7 avec une mise en solution, une trempe et un sur-revenu ou une stabilisation. La raison pour laquelle on utilise des alliages aluminium silicium est la supériorité de leurs propriétés de fonderie, en particulier absence de criquabilité, coulabilité élevée, bon pouvoir d'alimentation de la retassure. Seuls ces alliages à silicium supérieur ou égal à 5% se prêtent bien au moulage en coquille, par gravité ou basse pression, qui est le procédé dominant pour les culasses automobiles de grande série. Pour des fabrications de faible série généralement faites en moulage au sable, telles que les culasses de véhicules à hautes performances ou les pièces travaillant à chaud destinées à l'armement et à l'aéronautique, on utilise aussi parfois des alliages au cuivre du type AlCu5 additionnés d'éléments favorisant la tenue à chaud comme Ni, Co, Ti, V et Zr: on note en particulier dans cette catégorie l'AlCu5NiCoZr et l'AlCu4NiTi. Ces alliages sont très résistants à chaud, en particulier à 300 C où ils surpassent nettement les aluminium silicium mentionnés plus haut, mais souffrent de deux graves faiblesses : leur criquabilité élevée, joint à un mauvais comportement à la retassure, qui les rend très difficiles à couler CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 2 en coquille en grande série, et également la médiocrité de leurs caractéristiques mécaniques à température ambiante : ils ont en particulier un allongement très faible, qui les rend fragiles et peu performants en fatigue mécanique. Le tableau 1 résume les caractéristiques à température ambiante de ces deux alliages coulés au sable et traitées thermiquement à l'état T7 (Rp0.2 (ou 0.2%TYS) étant la limite d'élasticité en MPa; Rm (ou UTS) étant la résistance à la rupture en MPa; et A (ou E) étant l'allongement à la rupture en %): Tableau 1 Alliage Rp0.2 (MPa) Rm (MPa) A (%) A1Cu4NiTi Non mesurable 343 0.11 AlCu5NiCoZr 270 295 1 11 existe aussi un alliage anciennement normalisé par l'Aluminum Association (désignée AA par la suite par commodité) sous le numéro 224, qui est du type A1Cu5MnVZr. Il a été déclaré inactif par cette association qui l'a retiré depuis des années de son document périodiquement remis à jour Designations and Chemical Composition Limits for Aluminum Alloys in the Form of Castings and Ingot . Cet alliage 224 ne contient pas de magnésium (cet élément entrant dans la catégorie des impuretés, avec un maximum à 0.03% chacune, 0.10% total), et des résultats de caractérisation anciens sur des plaques coulées au sable ont montré les caractéristiques à l'état T7 décrites dans le tableau 2 : Tableau 2 Alliage Rp0.2 (MPa) Rm (MPa) A (%) 224 280 360 4.8 Problème posé Etant donné que, dans les futurs moteurs diesel à rampe commune ou suralimentés à essence, les chambres de combustion des culasses, et en particulier les pontets inter- soupapes, atteindront, voire dépasseront, 300 C, et subiront des pressions plus élevées que dans les générations des moteurs précédents aujourd'hui en service, l'emploi d'alliages aluminium cuivre constitue une solution en rupture par rapport aux progrès incrémentaux apportés par l'optimisation des alliages aluminium silicium. Mais il faut encore trouver un alliage de cette famille qui combine : - hautes propriétés mécaniques à température ambiante, - hautes propriétés mécaniques dans le domaine 250 ¨ 300 C, CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 3 - et haute résistance au fluage à 300 C, température caractéristique notamment des pontets inter-soupapes, éléments particulièrement sollicités thermo- mécaniquement. Les alliages AlCu5Mg classiques tels que l'A1Cu5MgTi (désigné 204 suivant l'AA), et les A206 et B206 (suivant l'AA), destinés à des pièces travaillant à température ambiante ou modérée ne répondent pas à ces exigences, en particulier à 300 C. Les alliages A1Cu4NiTi et A1Cu5NiCoZr (203 suivant l'AA) mentionnés plus haut sont eux trop faibles et fragiles à température ambiante. L'A1Cu5MnVZr (ancien 224 suivant l'AA) destiné aux pièces travaillant à chaud présente une combinaison de propriétés plus intéressante mais manque encore de limite d'élasticité à température ambiante par rapport aux propriétés améliorées recherchées: il donne, à l'état T7, une limite d'élasticité Rp0.2 = 280 MPa, à comparer avec 275 MPa pour l'AISi7Cu0.5Mg0.3 T7 et 311 MPa pour l'AlSi5Cu3Mg T7 (valeurs mesurées par la demanderesse et publiées respectivement dans les articles Alliages d'aluminium améliorés pour culasses Diesel (Hommes et fonderie- février 2008- N 382) et Aluminium Casting Alloys for Highly Stressed Diesel Cylinder Heads , (3. internationales Symposium Aluminium + Automobil) ;Düsseldorf; FRG ; 3-4 Feb.1988, pp. 154¨ 159, 1988). On a donc cherché à obtenir un progrès considérable par rapport à l'ancien 224 en termes de limite d'élasticité et de résistance ultime depuis la température ambiante jusqu'à 250 ¨ 300 C. On a aussi cherché à améliorer la résistance au fluage à 300 C de cet ancien alliage. Objet de l'invention - 25 L'invention a donc pour objet une pièce moulée à haute résistance mécanique statique à la température ambiante et à chaud et à haute tenue au fluage à chaud, en particulier à 300 C et plus, coulée en alliage d'aluminium de composition chimique suivante, exprimée en pourcentages pondéraux : Si : 0.02 - 0.50 %, de préférence 0.02 - 0.20 % et plus préférentiellement 0.02 - 0.06%, Fe: 0.02 - 0.30 %, de préférence 0.02 -0.20 %, plus préférentiellement 0.02 - 0.12 % et mieux 0.02 ¨ 0.06%, Cu : 3.5 ¨ 4.9 %, de préférence 3.8 ¨ 4.9 % et plus préférentiellement 4.0 - 4.8 %, Mn: <0.70 %, de préférence 0.20 - 0.50 %, CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 4 Mg: 0.05 - 0.20 %, de préférence 0.07 - 0.20 %, et plus préférentiellement 0.08 - 0.20 % et enfin de façon très préférentielle 0.09 - 0.13%, Zn: <0.30 %, de préférence <0.10 % et plus préférentiellement < 0.03% , Ni : <0.30 %, de préférence <0.10 % et plus préférentiellement <0.03%, V : 0.05 - 0.30 %, de préférence 0.08 - 0.25 %, et plus préférentiellement 0.10 - 0.20%, Zr: 0.05 - 0.25 %, de préférence 0.08 - 0.20 %, Ti : 0.01 - 0.35 %, de préférence 0.05 - 0.25 % et plus préférentiellement 0.10 - 0.20%, autres éléments au total <0.15%; et 0.05 % chacun, reste aluminium. Description des figures La figure 1 représente une grappe de quatre éprouvettes coulées en coquille de la société Rio Tinto Alcan de diamètre 'A" (6.35 mm). La figure 2 représente des courbes d'analyse enthalpique différentielle pour les alliages AlCu4.7MnVZrTi à teneur en magnésium de 0%, 0.09% et 0.13%. La figure 3 montre des résultats d'essais de fluage à 300 C sur les alliages A1Cu4.7MnVZrTi traités T7 et A1Si7Cu3.5MnVZrTi également traité T7 à teneur en magnésium variable respectivement de 0% à 0.13%.et de 0.1% à 0.15%. Description de l'invention L'invention repose sur la constatation par la demanderesse qu'il est possible d'apporter de très importantes améliorations aux caractéristiques citées plus haut de l'ancien alliage 224 (suivant l'AA), et de résoudre ainsi le problème posé, ce notamment par l'addition d'une quantité limitée de magnésium. En effet, l'addition d'une petite quantité de magnésium, de l'ordre de 0.10 à 0.15%, permet d'augmenter de façon considérable la limite d'élasticité et la résistance de l'alliage non seulement à température ambiante mais aussi à chaud, en particulier à 250-300 C et plus. C'est à température ambiante que le gain relatif est le plus important : comme exposé dans les exemples qui suivent et les tableaux 6, 7, 8, la limite d'élasticité passe d'environ 190 MPa sans magnésium à environ 340 MPa avec seulement 0.09% et ensuite à plus de 390 MPa avec 0.13%. Si l'on considère la moyenne des résultats obtenus avec 0.09% et 0.13% de magnésium, les gains observés sur la limite d'élasticité et la résistance à température ambiante sont remarquables : respectivement + 96% et + 29% en termes relatifs. CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 L'allongement est par contre sensiblement réduit de moitié mais conserve encore un niveau convenable de 6 à 8%. A température élevée, 250 puis 300 C, les gains apportés par l'ajout de magnésium subsistent même s'ils diminuent. Les gains observés sur la limite d'élasticité et la 5 résistance sont respectivement de 35 et 13% en termes relatifs à 250 C, et de 27 et 8% en termes relatifs à 300 C. Loin de nuire à la stabilité à chaud des phases durcissantes comme on aurait pu l'envisager, l'addition de magnésium reste bénéfique au moins jusqu'à 300 C, et ce d'autant que la perte d'allongement s'estompe à ces températures élevées. De plus, l'addition de magnésium améliore considérablement la tenue au fluage à chaud, réduisant par approximativement 2 par exemple la déformation observée après 300h à 300 C sous une contrainte de 30 MPa. L'addition de magnésium ne nuit donc pas à la stabilité à chaud, contrairement à la philosophie qui a conduit à la définition des alliages A1Cu5NiCoZr (203 suivant l'AA) et AlCu5MnVZr (224 suivant l'AA) classiques qui sont dépourvus de magnésium. 11 est intéressant de situer le niveau moyen de performance de l'alliage suivant l'invention (par souci de simplicité on a attribué la moyenne des caractéristiques des alliages à 0.09% et 0.13% de magnésium à l'alliage désigné AlCu4.7MnMg,õ03,VZrTi ) comparativement à quelques alliages culasses à base aluminium-silicium. Le tableau 3 résume les caractéristiques mécaniques. Tableau 3 T ambiante 250 C 300 C Alliage / traitement thermique Rp0.2 Rm A% Rp0.2 Rm A% Rp0.2 Rm A% AlCu4.7MnMgmoyVZrTi T7 369 451 7.4 182 226 9.8 125 158 14.8 AlSi5Cu3Mg F 172 237 2.1 107 133 5.8 60 86 12 AlSi7M90.3Ti T7 257 299 9.9 55 61 34.5 40 43 34.5 AlSi7Cu0.5Mg0.3Ti T7 275 327 9.8 66 73 34.5 40 44 34.6 AlSi7Cu3.5Mg0.15 MnVZrTi T7 306 392 5.2 101 115 27 60 70 31 En ce qui concerne la tenue au fluage à 300 C, l'alliage selon l'invention traité T7 peut être comparé à l'A1Si7Cu3.5Mg0.15MnVZrTi également traité T7, qui a aussi été mis au point par la demanderesse et est à sa connaissance le plus résistant au fluage de la série d'alliages aluminium silicium considérés dans le tableau précédent. La courbe de la figure 3 montre la très grande supériorité de l'A1Cu4.7MnMgVZrTi, qui se déforme sensiblement 4 fois moins dans les mêmes conditions. CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 6 Il apparaît ainsi que l'objectif de progrès en rupture par rapport aux alliages existants est bien atteint par l'addition de magnésium à une base de type A1Cu5MnVZrTi. Bien que l'addition de magnésium abaisse progressivement la température de brûlure hors équilibre, il reste possible de mettre en solution l'alliage à 525 C ou 528 C comme on le fait par exemple assez classiquement avec les alliages A206 et B206. Un traitement par palier permettra éventuellement de traiter l'alliage à une température finale un peu plus haute mais ce traitement par palier n'est pas indispensable compte tenu des résultats très élevés obtenus avec un traitement isotherme sous la température de brûlure. La teneur en magnésium peut être augmentée au-delà du domaine déjà expérimenté dans les exemples. Si on recherche uniquement résistance et dureté très élevées, avec une exigence de ductilité réduite, un niveau maximum de 0.38% peut être envisagé, sachant que la température de brûlure en sera abaissée et le traitement thermique devra être adapté. Le minimum pour obtenir un effet durcissant significatif est de l'ordre de 0.05%. Un domaine plus restreint est de 0.07% à 0.30% et le domaine préféré, correspondant aux compromis résistance ¨ ductilité ¨ fluage quantifié dans les exemples tout en ayant une largeur industriellement acceptable est 0.08 ¨ 0.20%, voire de 0.09 à 0.13%. Pour ce qui concerne les autres éléments constitutifs du type d'alliage suivant l'invention, leurs teneurs sont justifiées par les considérations suivantes : Silicium : il est généralement néfaste à la ductilité et peut abaisser la température de brûlure. Par contre, il améliore les propriétés de fonderie et en particulier est susceptible, même à faible niveau, de réduire la criquabilité, comme décrit dans l'ASM Handbook, volume 15, édition 2008. Un niveau minimum de 0.02% est nécessaire. Un niveau maximum de 0.50% est pensable pour des pièces solidifiées très rapidement ou ne nécessitant guère d'allongement, mais on préfèrera généralement moins de 0.20%, voire de 0.06%. Fer: il est néfaste à la ductilité, mais diminue par contre la criquabilité, comme également décrit dans l'ASM Handbook, volume 15, édition 2008. De plus le limiter à un très bas niveau augmente évidemment le coût de la pièce. Un niveau minimum de 0.02% est donc avantageux. Un niveau maximum de 0.30% est pensable pour des pièces solidifiées très rapidement ou ne nécessitant guère d'allongement, mais on préfèrera généralement moins de 0.20% pour des grandes séries automobiles, voire de 0.12% ou même 0.06% pour des pièces extrêmement sollicitées. Cuivre : il durcit l'alliage, augmentant limite d'élasticité et résistance mais diminuant l'allongement. La fourchette de l'ancien alliage 224 était de 4.5 à 5.5%. L'expérience CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 7 acquise par la demanderesse avec le B206 indique qu'il est bon de limiter le cuivre à un maximum de 4.9% car au-delà il est très difficile de remettre tout le cuivre en solution. Comme les présents résultats, obtenus avec un cuivre de 4.7 à 4.8%, montrent que la résistance à température ambiante obtenue avec addition de magnésium est très élevée mais que l'allongement est réduit par rapport à l'ancien alliage 224 sans magnésium, il est logique de prévoir la possibilité de réduire le cuivre en dessous de 4.5%, et plus particulièrement jusqu'à 3,5%. La demanderesse a effectué des travaux sur l'alliage B206 pour lesquels elle estime que les résultats qui sont transposables à l'alliage selon l'invention et montrent que qu'un abaissement du cuivre de 5.0% à 4.0% permet de gagner notablement en allongement au prix d'une perte de résistance, mais que celle- ci reste supérieure à 400 MPa. Dans l'optique de certaines culasses, il est même concevable d'accepter une baisse un peu plus importante de la résistance pour privilégier l'allongement et de réduire le cuivre jusqu'à 3.5%. On pourra choisir des sous- domaines entre 3.5% et 4.9% en fonction du compromis de caractéristiques visées pour la pièce spécifique. D'une façon générale, des sous domaines centrés sur 4.3% ou 4.4% tels que 3.8 ¨ 4.9% et mieux 4.0 ¨4.8% conduisent à un compromis assez équilibré. Manganèse: cet élément ne doit pas excéder 0.70% sous peine de risquer de former des phases intermétalliques grossières. Comme il améliore généralement les propriétés mécaniques, particulièrement à chaud, un domaine de 0.20 ¨ 0.50% analogue à celui des alliages du type 206 est préféré. Zinc: cet élément est une impureté qui, à haute teneur, peut diminuer les propriétés mécaniques et rendre le bain liquide plus oxydable. On peut envisager de tolérer jusqu'à 0.30% dans le but de faciliter l'emploi de métal de recyclage, mais on préfère moins de 0.10% et mieux moins de 0.03% pour des pièces à hautes performances. Nickel: il contribue en général à la résistance mécanique à chaud mais réduit considérablement l'allongement. Comme la résistance à chaud est assurée dans l'invention par l'addition d'autres éléments, cuivre, magnésium, vanadium et zirconium, le nickel est considéré ici comme une impureté, qu'on limite au maximum à 0.30% dans le but de faciliter l'emploi de métal de recyclage, et de préférence à 0.10% et encore mieux à 0.03% pour des pièces à hautes performances. Vanadium: Cet élément péritectique améliore en particulier la résistance au fluage à chaud. La demanderesse a observé que, dans une autre base d'alliage contenant du silicium, la résistance au fluage était fortement améliorée entre 0 et 0.05%, puis s'améliorait ensuite plus progressivement de 0.05% à 0.17% et était au-dessus de 0.17% stable à un excellent CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 8 niveau. Limiter le niveau maximum de vanadium à 0.15% comme dans l'ancien 224 ne paraît donc pas souhaitable. Dans l'alliage suivant l'invention, un niveau de 0.05 à 0.30% est prévu, qui pourra être resserré à des sous-domaines plus étroits de 0.08 - 0.25% et préférentiellement 0.10 - 0.20%. Zirconium: cet élément péritectique améliore également en particulier la résistance au fluage à chaud, et son effet est additif à celui du vanadium. Une teneur de 0.05 - 0.25% et de préférence 0.08 - 0.20% est retenue. Titane: cet élément péritectique a deux effets différents : d'une part, il est souvent utilisé comme élément affinant du grain, souvent en combinaison avec un ajout d'alliage mère ou de sel ajoutant du titane et du bore. Cependant, il existe d'autres pratiques d'affinage consistant à n'ajouter que des produits introduisant du titane et du bore, voire même du bore seul, et dans ce dernier cas la présence de titane n'est pas favorable. D'autre part, le titane contribue à la bonne résistance au fluage à chaud, quoi que moins fortement que vanadium et zirconium, comme la demanderesse l'a observé. On a donc retenu une teneur maximum de 0.35%, mais on préférera en général une addition de 0.05 à 0.25% et encore mieux de 0.10 à 0.20%. Les autres éléments sont à considérer comme des impuretés. Dans le but de faciliter le recyclage, on peut tolérer pour certaines pièces un niveau total maximum de 0.50%, mais de préférence pour les pièces sollicitées on adoptera des maximas de 0.15% au total et 0.05% chacun. Exemples On a élaboré dans un four électrique de 35 kg une série de trois compositions d'alliages décrites dans le tableau 4, tous éléments exprimés en % pondéral. Tableau 4 Repère Si Fe Cu Mn Mg Ti V Zr 0 Mg 0.09 0.14 4.83 0.34 0.00 0.18 0.21 0.14 0.09 Mg 0.08 0.14 4.74 0.33 0.09 0.22 0.17 0.13 0.13 Mg 0.09 0.14 4.81 0.33 0.13 0.20 0.17 0.13 Ces alliages ont été affinés par addition d'A1Ti5B (30 ppm de titane ainsi ajouté) et dégazés par un traitement de 10 minutes à l'aide d'un rotor en graphite tournant à 300 tours / minute avec un débit d'argon de 5 litres / minute, le tout sous couverture d'un flux de lavage MgC12 60% - KC1 40%. CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 9 On a ensuite coulé des éprouvettes en coquille de diamètre 1/4" (6.5 mm)du type de la société Rio Tinto Alcan représentées à la figure 1 destinées aux essais de traction ainsi que des éprouvettes coquille ASTM B108 de diamètre 1/2" (12.7 mm) destinées à servir d'ébauches aux éprouvettes de fluage de 4 mm de diamètre. La figure 1 représente plus particulièrement une grappe 10 de 4 éprouvettes 11 de la société Rio Tinto Alcan coulées en coquille avec un diamètre du fût 1/4" (6.35 mm). Cette grappe 10 reprend, à l'échelle1/2, la conception de l'éprouvette ASTM B108. On a d'abord déterminé la température de brûlure des différentes compositions en procédant à des analyses enthalpiques différentielles (AED) sur des pastilles usinées dans les éprouvettes coulées. La vitesse de montée en température a été de 20 C/minute. Les courbes d'AED sont représentées à la figure 2. Les températures de brûlure observées correspondant aux pics de fusion dépendent évidemment de la teneur en magnésium comme indiqué dans le tableau 5: Tableau 5 Teneur en Mg (%) Température de brûlure ( C) 0 542.7 0.09 538.2 0.13 533.9 La température de brûlure se décale progressivement vers les températures plus basses quand la teneur en Mg augmente de 0% à 0.09% puis 0.13%. On a ensuite traité thermiquement ces 3 alliages en leur appliquant une mise en solution comportant un palier préliminaire de 2 h à 495 C puis un palier principal de 12 h à 528 C, suivi d'une trempe à l'eau à 65 C et d'un revenu de 4h à 200 C. On obtient ainsi un alliage à l' état T7. Les ébauches destinées aux essais de fluage ont subi, préalablement à ce traitement thermique, une compaction isostatique à chaud sous 1000 bar à 485 C pendant 2h afin d'éliminer toute microporosité qui pourrait affecter sérieusement les essais compte tenu du faible diamètre de l'éprouvette. Les caractéristiques mécaniques statiques ont été mesurées à température ambiante et à 250 C et 300 C. Dans ces deux derniers cas, les éprouvettes ont été préchauffées pendant 100 h à la température considérée avant d'être tractionnées. Les résultats figurent dans les tableaux 6, 7 et 8 : CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 Tableau 6 : caractéristiques mécaniques à température ambiante Alliage Rp0.2 Rm A Mg (%) MPa MPa 0 187.8 349.3 15.3 0.09 344.5 435.0 8.2 0.13 393.4 466.4 6.6 Tableau 7 : caractéristiques mécaniques à 250 C Alliage Rp0.2 Rm A Mg (%) MPa MPa 0 134.7 199.5 10.7 0.09 172.2 223.7 7.3 0.13 191.4 228.8 12.2 5 Tableau 8 : caractéristiques mécaniques à 300 C _ Alliage Rp0.2 Rm A Mg (%) MPa MPa 0 98.3 147.1 14.5 0.09 130.2 167.2 11.2 0.13 120.0 149.4 18.3 On a réalisé des essais de fluage à 300 C dans les conditions suivantes : Les éprouvettes de diamètre 4 mm dans la zone utile, usinées dans les ébauches de diamètre 12.7 10 mm, ont d'abord été préchauffées 100 h à 300 C dans un four séparé, puis placées sur la machine de fluage et stabilisées à nouveau 1/2 h à 300 C avant de les mettre sous une charge constante de 30 MPa. La déformation en % est alors enregistrée continûment pendant une durée de 300 h à 300 C. Le critère principal utilisé pour l'interprétation des essais est la déformation obtenue après 300 h. Le tableau 9 résume les résultats : CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 11 Tableau 9: Fluage à 300 C sous 30 MPa Teneur en magnésium (%) Déformation (en %) après 300h 0 0.26 0.09 0.13 0.13 0.14 Ces résultats sont reportés dans la figure 3 où apparaissent également à titre de référence les résultats obtenus par la demanderesse avec une série d'alliages de type AlSi7Cu3.5MnVZrTI à différentes teneur en Mg. Une pièce peut alors être moulée à partir de l'alliage avantageux définit ci- dessus, cette pièce pouvant notamment être une culasse ou un insert d'une culasse ou d'une autre pièce nécessitant une haute résistance mécanique statique à la température ambiante et à chaud et une haute tenue au fluage à chaud, en particulier à 300 C. La pièce est avantageusement traitée T7, même si un traitement T6 est également envisageable. Aussi, récemment, un nouveau procédé de fonderie nommé Moulage par Ablation a été introduit en Amérique du Nord. Ce procédé a été décrit dans l'article Ablation Casting de J.Grassi, J.Campbell, M.Hartlieb et F. Major présenté au TMS 2008. Ce procédé consiste à couler d'abord la pièce dans un moule de sable + liant assez isolant, puis lorsqu'elle a atteint au moins localement une fraction solide suffisante, à arroser le moule avec un (ou plusieurs) jet d'eau qui dissout instantanément le liant du sable et provoque l'effondrement du moule. La pièce en cours de solidification est alors directement exposée à l'impact de l'eau qui en extrait les calories très rapidement (de façon analogue à celle observée par exemple en coulée continue verticale de billettes d'aluminium). Ceci conduit à une solidification très rapide de l'alliage et à l'obtention de structures fines ayant des caractéristiques mécaniques élevées, égales ou même supérieures à celles obtenues en coulée en coquille avec un moule métallique. Le moulage par ablation convient particulièrement au moulage des alliages à criquabilité élevée. Initialement, il s'agit de moulage sable qui contrarie fort peu le retrait, et ensuite après ablation du moule la fin de la solidification s'effectue sans moule rigide du tout. En plus d'assurer une vitesse de solidification élevée, le procédé conduit aussi à des gradients de température élevés car l'aspersion est généralement progressive, commençant sur certaines zones choisies et avançant vers les points de fin de solidification où il est possible d'attacher les masselottes. Ceci favorise avantageusement aussi l'utilisation d'alliages à CA 02812236 2013-03-21 WO 2011/083209 PCT/FR2010/000812 12 faible capacité d'alimentation de la retassure, tel que les alliages aluminium cuivre, dont l'alliage selon l'invention. Aussi, l'invention a également pour objet un procédé pour mouler une pièce à partir de l'alliage selon l'invention, notamment un insert ou une culasse, comprenant les étapes consistant à: - fournir un moule formé à partir d'un agrégat et d'un liant hydrosoluble ; - couler l'alliage dans le moule ; - projeter de l'eau sur le moule de manière à désagréger le moule et à refroidir l'insert ou la culasse pour accélérer la solidification de l'alliage. La mise en oeuvre de ce procédé permet avantageusement la production en grande série de pièces moulées avec l'alliage selon l'invention ayant des propriétés mécaniques à chaud bien plus élevées que les alliages aluminium silicium. Les perspectives d'emploi d'alliages aluminium cuivre à haute résistance à chaud ne sont cependant pas restreintes au procédé par ablation : il existe d'autres voies dont le moulage au sable classique, éventuellement combiné à des refroidisseurs métalliques, et le moulage en Moule métallique coquille, éventuellement avec des modifications de tracé des pièces permettant d'accepter les moins bonnes propriétés de fonderie de cette famille d'alliages.
Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Accordé par délivrance 2018-03-27
Inactive : Page couverture publiée 2018-03-26
Inactive : Taxe finale reçue 2018-02-09
Préoctroi 2018-02-09
Un avis d'acceptation est envoyé 2017-10-02
Lettre envoyée 2017-10-02
Un avis d'acceptation est envoyé 2017-10-02
Inactive : Approuvée aux fins d'acceptation (AFA) 2017-09-26
Inactive : Q2 réussi 2017-09-26
Modification reçue - modification volontaire 2017-07-18
Inactive : Dem. de l'examinateur par.30(2) Règles 2017-01-24
Inactive : Rapport - Aucun CQ 2017-01-20
Lettre envoyée 2015-12-11
Toutes les exigences pour l'examen - jugée conforme 2015-12-04
Requête d'examen reçue 2015-12-04
Modification reçue - modification volontaire 2015-12-04
Exigences pour une requête d'examen - jugée conforme 2015-12-04
Inactive : Page couverture publiée 2013-06-05
Lettre envoyée 2013-05-09
Inactive : Transfert individuel 2013-04-25
Inactive : Inventeur supprimé 2013-04-23
Inactive : CIB attribuée 2013-04-23
Inactive : CIB attribuée 2013-04-23
Inactive : CIB attribuée 2013-04-23
Inactive : CIB attribuée 2013-04-23
Demande reçue - PCT 2013-04-23
Inactive : CIB en 1re position 2013-04-23
Inactive : Notice - Entrée phase nat. - Pas de RE 2013-04-23
Inactive : Inventeur supprimé 2013-04-23
Exigences pour l'entrée dans la phase nationale - jugée conforme 2013-03-21
Demande publiée (accessible au public) 2011-07-14

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2017-11-23

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
RIO TINTO ALCAN INTERNATIONAL LIMITED
Titulaires antérieures au dossier
DANNY JEAN
JAMES FREDERICK MAJOR
MICHEL GARAT
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2013-03-20 12 596
Abrégé 2013-03-20 2 83
Dessins 2013-03-20 2 34
Revendications 2013-03-20 2 70
Dessin représentatif 2013-03-20 1 9
Revendications 2017-07-17 3 86
Dessin représentatif 2018-02-26 1 5
Avis d'entree dans la phase nationale 2013-04-22 1 196
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2013-05-08 1 126
Rappel - requête d'examen 2015-08-09 1 116
Accusé de réception de la requête d'examen 2015-12-10 1 176
Avis du commissaire - Demande jugée acceptable 2017-10-01 1 162
PCT 2013-03-20 25 873
Modification / réponse à un rapport 2015-12-03 2 106
Demande de l'examinateur 2017-01-23 4 224
Modification / réponse à un rapport 2017-07-17 7 341
Taxe finale 2018-02-08 2 78