Language selection

Search

Patent 2857634 Summary

Third-party information liability

Some of the information on this Web page has been provided by external sources. The Government of Canada is not responsible for the accuracy, reliability or currency of the information supplied by external sources. Users wishing to rely upon this information should consult directly with the source of the information. Content provided by external sources is not subject to official languages, privacy and accessibility requirements.

Claims and Abstract availability

Any discrepancies in the text and image of the Claims and Abstract are due to differing posting times. Text of the Claims and Abstract are posted:

  • At the time the application is open to public inspection;
  • At the time of issue of the patent (grant).
(12) Patent Application: (11) CA 2857634
(54) English Title: METHOD OF DIGITALLY CONSTRUCTING A PROSTHESIS
(54) French Title: METHODE DE CONSTRUCTION NUMERIQUE D'UNE PROTHESE
Status: Deemed Abandoned and Beyond the Period of Reinstatement - Pending Response to Notice of Disregarded Communication
Bibliographic Data
(51) International Patent Classification (IPC):
  • B29C 67/04 (2017.01)
  • A61F 02/60 (2006.01)
(72) Inventors :
  • STRATFORD LAYMAN, WILLIAM (United States of America)
  • LAYMAN, W. BRIAN (United States of America)
(73) Owners :
  • WILLIAM STRATFORD LAYMAN
  • W. BRIAN LAYMAN
(71) Applicants :
  • WILLIAM STRATFORD LAYMAN (United States of America)
  • W. BRIAN LAYMAN (United States of America)
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Associate agent:
(45) Issued:
(22) Filed Date: 2014-07-23
(41) Open to Public Inspection: 2015-01-23
Availability of licence: N/A
Dedicated to the Public: N/A
(25) Language of filing: English

Patent Cooperation Treaty (PCT): No

(30) Application Priority Data:
Application No. Country/Territory Date
13/948,361 (United States of America) 2013-07-23
14/314,776 (United States of America) 2014-06-25

Abstracts

English Abstract

A prosthetic limb and process to digitally construct a prosthetic limb which includes first, digitally producing a modified mold of a residual limb via 3d scanners and software known to the industry; constructing a test socket from the digitally modified mold and be equipped with an alignable system; for example, a pylon, along with the desired prosthetic foot; accurately scanning the test socket, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment; transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; once the modified model has received the transferred alignment, fabricating the type of hookup in the socket; i.e., plug fit, four hole, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software; and once the desired prosthetic attachment is finalized, the next step is to send the finished file to a 3- D printer to produce the definitive prosthetic device. The 3-D printed socket would then be placed in a vibratory finishing system to smooth out the interior and exterior surfaces of the printed socket; and the walls of the 3-D printed socket would be sealed by applying a mixture of epoxy sealant, for example, TC-1614, to the inside and outside walls of the socket, and placing the socket into an oven for a sufficient amount of time to seal the walls of the socket. Preferably, the prosthesis would be printed out of Nylon 12 material or of a strong plastic, such as ULTEM®, or carbon fiber, or other material of equivalent or greater strength that may be known or developed in the future.
Claims

Note: Claims are shown in the official language in which they were submitted.

CLAIMS 1. A process to digitally construct a prosthetic limb, comprising the following steps: a) digitally producing a modified mold of a residual limb via 3d scanners and software; b) constructing a test socket from the digitally modified mold; c) equipping the test socket with an alignable system, including a pylon, along with the desired prosthetic foot; d) accurately scanning the test socket, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted to provide a 3-D Image of the finalized prosthetic alignment; e) transferring the finalized digital alignment of the test socket to the finalized digitally modified mold; and placing the 3-D printed socket in a vibratory finishing system to smooth out the interior and exterior surfaces of the printed socket. 2. The process in claim 1, wherein the test socket is scanned with a 3D scanner. 3. The process in claim 1, wherein the test socket constructed of Nylon 12 material, or other suitable materials, including, but not limited to ULTEM®, carbon fiber, or other material of equal or greater strength that may be known or developed in the future. 4. The process in claim 1, further comprising the step, once the modified mold has received the transferred alignment, of fabricating the type of hookup in the socket; such as a plug fit, a four hole fit, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software. 5. The process in claim 4, once the desired prosthetic attachment is finalized, sending the finished file to a 3-D printer to produce the definitive prosthetic device. 6. The process in claim 4, wherein a preferable printer is sold under the trademark of Fortus® which would be utilized in this process. 7. The process in claim 1, further comprising the step of sealing the 3-D printed socket by applying a high solids content epoxy penetrating sealing and coating ¨13¨ resin, or some other equivalent epoxy sealing product, to the inside and outside walls of the socket, and placing the socket into an oven for a sufficient amount of time to seal the walls of the socket. 8. A method of constructing a prosthesis of Nylon 12 material, comprising the steps of: a) retrieving a file from a computer; b) manipulating that file; c) adjusting each "Z" line in the file to insure the strongest build of the socket with proper trim lines; d) sending the file to a 3D printer; and e) printing out a prosthesis constructed of a material sufficiently strong to function as a prosthetic limb and which allows one to build the prosthesis with prosthetic techniques for attachments.; f) placing the 3-D printed socket in a vibratory finishing system to smooth out the interior and exterior surfaces of the printed socket; and sealing the 3-D printed socket by applying an epoxy sealing material to the inside and outside walls of the socket, and placing the socket into an oven for a sufficient amount of time to seal the walls of the socket. 9. The method in claim 8, wherein the attachments would be selected from a group comprising: a) a four hole hook up with vacuum; b) a four hole hook up that will support a drop lock; c) a fitting of cylindrical adapter; and d) custom attachments for certain feet/attachments. 10. The method in claim 8, wherein the material to construct the socket may be selected from suitable materials, including, but not limited to ULTEM®, carbon fiber, or other material of equal or greater strength that may be known or developed in the future, constructing a prosthesis. 11. The process in claim 8, wherein the vibratory finishing system comprises a batch vibratory unit, such as Model VB-2034 End Discharge Vibratory Finishing System of the type manufactured by ALMCO. ¨14¨ 12. The method in claim 8, where in the epoxy sealing material comprises a high solids content epoxy penetrating sealing and coating resin system, manufactured by BJB Enterprises, or some other equivalent epoxy sealing product. 13. A method of constructing a prosthesis, comprising the steps of: a) retrieving a file from a computer, b) manipulating that file, c) adjusting each "Z" line in the file to insure the strongest build of the socket with proper trim lines; d) sending the file to a 3D printer; e) printing out a prosthesis constructed of a material, preferably Nylon 12, but other suitable materials may include ULTEM®, carbon fiber, or other material of equal or greater strength that may be known or developed in the futureõ so that the prosthesis is able to function as a prosthetic limb; and f) sealing the 3-D printed socket by applying a epoxy sealing material, to the inside and outside walls of the socket, and placing the socket into an oven for a sufficient amount of time to seal the walls of the socket. 14. The method in claim 13, further comprising the step placing the 3-D printed socket in a vibratory finishing system to smooth out the interior and exterior surfaces of the printed socket prior to sealing the walls of the socket. 15. The method in claim 13, where in the epoxy sealing material comprises a high solids content epoxy penetrating sealing and coating resin system, manufactured by BJB Enterprises, or some other equivalent epoxy sealing product. ¨15¨
Description

Note: Descriptions are shown in the official language in which they were submitted.

CA 02857634 2014-07-23 08928781CA METHOD OF DIGITALLY CONSTRUCTING A PROSTHESIS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to prosthetics. More particularly, the present invention relates to a novel process for constructing a prosthetic limb through a series of fabrication steps including retrieving a file from a computer, manipulating that file that has captured alignment and socket fit, then having to adjust each "Z" line in the file to insure the strongest build of the socket with proper trim lines, sending it to a 3D printer, which in turn has the ability to print out a completed, wearable prosthetic limb constructed of a material, preferably Nylon 12, but other suitable materials may include ULTEM , strong plastic material, such as ULTEM (A Registered Trademark of General Electric Co.), carbon fiber, or other material of equal or greater strength that may be known or developed in the future; and which provides that the inner and outer surfaces of the prosthetic socket undergo a process to smooth and seal the surfaces to improve the wearability. 2. General Background of the Invention The design of an effective prosthetic socket is crucial to the rehabilitation and overall health of a person with an amputated limb. Most of the time and energy a practitioner applies in making a prosthesis is spent on fabricating the socket that must be fitted to the residual limb. The prosthetic socket must be shaped so that it supports the residual limb in load tolerant areas, while avoiding irritation of sensitive regions on the limb that contact the inner surface of the socket. If these criteria are not achieved, when the patient uses the prosthesis, residual limb soft tissue breakdown often occurs. The result is painful sores, blisters, ulcers, or cysts on the residual limb that typically restrict continued prosthesis use, and in severe cases, necessitate a further amputation to a higher anatomical level, which can lead to further disability. The incidence of skin breakdown in lower-limb amputees has been reported to be from 24% to 41%. Accordingly, at any one time, as many as 41% of prosthesis users may be experiencing breakdown of the ¨1¨ CA 02857634 2014-07-23 08928781CA tissue on the residual limb. The principal cause of such breakdown is a poorly fitting prosthetic socket. Practitioners face challenges in making quality sockets for the increasing amputee popularity. Also, there is a shortage of prosthetists in the industry, and that shortage is expected to increase in the future, as the demand for prosthetic devices increases. A prosthetist=s time is precious and must be used as efficiently as possible. It will therefore be evident that there is a need for technology to improve a prosthetist=s efficiency, speed, documentation, repeatability, and quality of fitting a socket to a patient=s residual limb, and to ensure a proper socket design early in the process of fitting a prosthetic socket to a recipient. In the current state of the art, one way of capturing an image of a residual limb in order to gather a positive mold is by hand casting. The procedure one would use in the traditional format of hand casting would follow certain steps. The initial step would include the following materials and tools needed for measuring the patient: stockinette, plaster bandages, indelible pencil, preparations for suspension (example: silicone liners, foam liners, hard socket), also measuring tools such as a length stick M/L gauge and tape measure. These tools and materials would assist a prosthetist in taking the proper cast along with techniques they acquired through training. After the proper cast has been taken by a certified individual, the fabrication of the test socket would be as follows. First, one would pour the negative mold or cast in order to receive the positive mold with a powder substance called plaster of paris. Once the plaster hardens, the next step is striping the plaster bandages off of the mold. Then the positive mold is modified by hand to achieve its voids and pressure points in precise locations with plaster of paris. After the desired reliefs are added it is then ready for a term used in the industry known as either drap pull or bubble pull. These are techniques in which a clear plastic is pulled over the positive model. Therefore, this manual technique for capturing an image of a residual limb in order to gather a positive mold is greatly improved upon by the use of a digital process as will be described herein. Patent No. Title Issue Date 7,447,558 Apparatus for Determining A Three 11-04-2008 Dimensional Shape of an Object ¨2¨ CA 02857634 2014-07-23 = 08928781CA Patent No. Title Issue Date 7,225,050 Method and Apparatus for Precisely Fitting, 05-29-2007 Reproducing, and Creating 3-Dimensional Objects from Digitized and/or Parametric Data Inputs Using Computer Aided Design and Manufacturing Technology 7,162,322 Custom Prosthetic Liner Manufacturing 01-09-2007 System and Method 6,463,351 Method for Producing Custom Fitted 10-08-2002 Medical Devices 2010/0161076 Orthotic or Prosthetic Cushioned Device and 06-24-2010 Method of Making the Same 2010/0023149 Computer Aided Design and Manufacturing 01-28-2010 of Transtibial Prosthetic Sockets 2006/0020348 Method and Associated System for 01-26-2006 Recording and Retrieving Fabrication and/or Fitting Data Associated with a Prosthetic Component 2006/0094951 Computer- Aided-Design of Skeletal Implants 05-04-2006 BRIEF SUMMARY OF THE INVENTION The method and process of the present invention solves the problems confronted in the art in a simple and straightforward manner. What is provided is a process for making a prosthetic limb, wherein one would retrieve a manipulated file from a computer that has been through the test socket phase; that file will be manipulated through the definitive socket phase using specific 3D prosthetic software to design the socket for current practiced methods. Prior to sending to the printer, each "Z" line in the file would be adjusted to insure the strongest build of the socket with proper trim lines; Thereafter it will be ready to be sent to a 3D printer, which in turn has the ability to print out the prosthetic limb from a material, such as a strong plastic material, ULTEM , or carbon fiber, or other material of equal or greater strength that may be known or developed in the future. More specifically, the steps in this inventive process include, first, digitally producing a modified mold of a residual limb via 3D scanners and software known to the industry. A test socket would be constructed from the digitally modified mold and be equipped with an alignable system; for example, a pylon, along with the ¨3¨ CA 02857634 2014-07-23 08928781CA desired prosthetic foot. The test socket would be accurately scanned, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized prosthetic alignment. The next step would be to transfer the finalized digital alignment of the test socket to the finalized digitally modified mold. Once the modified model has received the transferred alignment, one would proceed to fabricate the type of hookup in the socket; i.e., plug fit, four hole, support drop lock, or any other type of industry standard connection or accommodation via basic 3D software, including adjusting each "Z" line in the file to insure the strongest build of the socket with proper trim lines. Once the desired prosthetic attachment is finalized, the next step is to send the finished file to a 3-D printer to produce the definitive prosthetic device. One such printer is sold under the trademark of Fortus which would be utilized in this process designed by Stratasys, but there may be other such printers available. In earlier embodiments, the prosthesis would be printed out of a material such as ULTEM , or carbon fiber, or other material of equal or greater strength that may be known or developed in the future. However, recent tests have shown that the prosthesis could be printed from a product called Nylon 12, which appears to be a product that is equal to or may be better than ULTEM or carbon fiber. As background, Nylon is a generic designation for a family of synthetic polymers known generically as aliphatic polyamides, first produced by Dupont. Nylon is one of the most commonly used polymers. Key representatives are nylon-6,6; nylon-6; nylon-6,9; nylon-6,10; nylon-6,12; nylon-11; nylon-12 and nylon-4,6. Nylon 12 is a semi-crystalline engineering plastic with very high toughness and good chemical resistance for varied applications, including prosthetics. The main characteristics of Nylon 12 are very useful, which include that Nylon 12 is extremely tough; possesses good sliding properties; abrasion resistant; good chemical resistance to many oils, greases, diesel, petrol and cleaning fluid; light low water absorption; Good electrical insulation; and easily machined and dimensionally accurate; and easily welded and bonded. As stated earlier, by utilizing this process, the prosthetist is allowed to construct the prosthesis with prosthetic techniques for attachments such as: ---Four hole hook up with vacuum ¨4¨ CA 02857634 2014-07-23 08928781CA ---Four hole hook up that will support a drop lock ---Fitting of pylon or adapters ---Custom attachments (for certain feet/attachment) Therefore, it is a principal object of the present invention to provide a prosthesis and a method to fabricate a prosthesis constructed of a material, preferably Nylon 12, but other suitable materials may include ULTEM , carbon fiber, or other material of equal or greater strength that may be known or developed in the future, through the use of digital manipulation of a file that has captured the alignment and the socket measurements, then created a definitive prosthesis by a method which can be done in an efficient rate and manner than the conventional methods which are time consuming. It is a further principal object of the present invention to provide a process to smooth and seal the inner and outer surfaces of the prosthetic socket to improve the wearability. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein: Figure 1 illustrates a modified mold of a residual limb digitally produced via 3D scanners and software; Figure 2 illustrates a carving of the modified model before it goes with the test socket to be fabricated; Figures 3A and 3B illustrate two views of a fabricated test socket which is hooked up to an alignment or an alignable system respectively; Figures 4A through 4B illustrate steps in the scanning of the test socket and the alignment, with Figure 4C illustrating the captured alignment; Figures 5A and 5B illustrate the modified mold and the beginning stages of transferring alignment, illustrating the addition of the pylon; Figure 6 illustrates the process of cross-referencing of the modified mold with the alignment attachment with the test socket with the correct alignment; ¨5¨ CA 02857634 2014-07-23 08928781CA Figure 7 is the completed merge of the process illustrated in Figure 6 to assure the correct alignment; Figure 8 is an image of the socket after alignment has been captured and with the use of CAD software showing a four hole hookup adapted to the socket; Figure 9 is an actual printout of the image in Figure 8 showing the four hole hookup; Figure 10 is a printout of the prosthesis which has a plug fit adaptor; Figure 11 is a printout of the prosthesis which has a plug fit where a pylon or adaptor can be engaged; and Figure 12 is a Flow Chart illustrating a preferred embodiment of the method or process of constructing a prosthetic limb through a digital format; and Figures 13 and 14 illustrate in Flow Chart format the steps of Smoothing the prosthetic limb (3D socket) and Sealing the prosthetic limb (3D socket) respectively. DETAILED DESCRIPTION OF THE INVENTION Figures 1 through 12 illustrate a preferred embodiment of the method or process of constructing a prosthetic limb through a digital format, while Figures 13 and 14 illustrate in Flow Chart format the steps of Smoothing the prosthetic limb (3D socket) and Sealing the prosthetic limb (3D socket) respectively. 2 0 Before reference is made to the Figures, in general, this technique of achieving a positive mold for a test socket in a digital format is by scanning the residual limb. The first step would be to choose the materials and tools needed for measuring a patient. Again, one would need to prepare suspension of the prosthesis (silicone liner, foam or other types of socket designs); a scanner; a laptop; reflective dots; measuring tools such as a length stick M/L gauge tape measure, etc. The method may vary by which Distal Device used. After preparing oneself with the items one would need to take a digital image of a residual limb, the individual would use a scanner to capture the digital image of the limb. After the limb is captured, the individual would use a prosthetic software which is already known in the art, to modify the 3-D image or positive mold to achieve its relief and pressure points in precise locations. In essence one would modify the residual limb with ¨6¨ CA 02857634 2014-07-23 08928781CA the same basic techniques that are taught and used in the pre-scanner era or plastic molds. After modifying the mold in the desired manner via CAD, the positive mold is designed, and the final stages of a test socket is near. Before one would vacuum pull a test socket, a trained individual would determine the proper plastic material, and certain mechanical attachments were needed. Also required is the technique discussed earlier of forming the plastic over the mold (drape or bubble pull). Finally, after the plastic has cooled to a workable form, one would clean the proper trim lines, make final mechanical preparations and finalize the test socket before fitting the patient. During the fitting of the test socket, one would observe pressure points and proper fit of the test socket. Next, one would make adjustments if needed and fabricate a second socket if need be. At this time, alignment can be observed and obtained. When the fabrication of the definitive sockets materials have cured, the socket is removed from the mold and trimmed out. It is then applied to the desired prosthetic components in the final delivery, i.e., during the fit/walk, the prosthetist is looking for the proper fit of socket and the correct alignment that correspond to the patient's gait. In the process of the present invention, the individual would receive the aligned test socket, then one would capture the alignment and achieve a digital alignment via scanners and CAD systems along with the final test socket, the images can be merged to create a positive mold in an alignment. Once the digital prosthetic design is complete and approved, it is then sent to a 3- D printer where it is then printed or fabricated as a wearable prosthetic limb. As stated earlier, one such printer is sold under the trademark of Fortus which would be utilized in this process designed by Stratasys, although there may be other such printers available for use. During this process the preferred material to provide a prosthesis and a method to fabricate a prosthesis constructed of a material, preferably Nylon 12, but other suitable materials may include ULTEM , carbon fiber, or other material of equal or greater strength that may be known or developed in the future, while the printers are a product of Stratasys Corporation or other such types of printers. After the print is complete, the prosthetic limb is then shipped to the prosthetist. Upon delivery, the prosthetist will have an aligned prosthesis and would have the ability to finish the proper trim lines. During ¨7¨ CA 02857634 2014-07-23 08928781CA fit/walk the prosthetist is looking for the proper fit of socket and the correct alignment that corresponds to the patient's gait. Turning now to Figures 1 through 11, there is illustrated the various steps involved in the method of the present invention. In Figure 1 there is illustrated a modified mold 10 of a residual limb which has been digitally produced via 3D scanners and software known in the industry. As illustrated, the modified mold 10 would include the relief and pressure points 11 of a test socket which would be actually molded. In Figure 2, there is illustrated a carving 13 of a modified model before it is matched with the test socket to be fabricated. Turning to Figure 3A there is illustrated an actual test socket 12 which has been constructed from the digitally modified mold 10, which is hooked up to an alignment system 15, having a pylon 16 and a prosthetic foot 17. In Figure 3B, the test socket 12 has been equipped with an alignable system 21, including a pylon 16, together with base 23 of the alignable system 21, rather than the prosthetic foot 17 as seen in Figure 3A. It should be noted that the actual test socket 12, as seen in Figures 3A and 3B, has also been equipped with a plurality of dots 20 so as to allow the socket 12 to be accurately scanned, as covered by the next step in the process. Figures 4A and 4B illustrate the images which appear of the test socket 12 as the test socket 12 is being accurately scanned, preferably with a 3D scanner, along with finalized alignment that has been recorded and adjusted by a certified practitioner to provide a 3-D Image of the finalized captured prosthetic alignment, or the completed image of the aligned prosthetic limb 22 which is illustrated in Figure 4C. In Figures 5A and 5B there is illustrated examples of the modified mold and the beginning stages of transferring the alignment. It should be noted that in Figure 5A, there has been placed a 30mm adaption (pylon 16), while in Figure 5B there is a shorter adaption (pylon 16) adapted to the modified mold. The next step would be to transfer the finalized digital alignment of the test socket 12 to the finalized digitally modified mold 10, as is illustrated in Figure 6. In Figure 6, the image on the left is the modified mold 10 with the alignment attachment that can be manipulated, on the right is the test socket 12 with the correct alignment. In this step, one is merging the alignment of a test socket (inner portion 24 of a prosthesis) with the final manipulated model (outer fit 26 of the prosthesis) as one. This is done by using techniques in the software that allows one to ¨8¨ CA 02857634 2014-07-23 08928781CA overlap the images to cross reference the objects at hand. But first using a certain cylindrical tool in the software to simulate the appearance of a pylon 16 (normally 30 mm) needs to be added to the distal portion of the final manipulated model (inner model). This will give the individual the option of lining up the alignment or changing it at this time. When cross-referenced, both models should line up exactly using the alignment model as reference. In Figure 7, there is illustrated the final merged image 27 of both to assure there is correct alignment which does not have to be modified or corrected. In the process described above, it is foreseen that in the future this process as described herein will be accomplished through software to be developed. In Figure 8, after the alignment has been captured, as described above, the next step is to use CAD software to proceed to fabricate the type of hookup in the definitive socket 28; i.e., plug fit, four hole (the type illustrated in Figure 8), support drop lock, or any other type of industry standard connection or accommodation via basic 3D software. Prior to sending to the printer, it is important that each "Z" line in the file is adjusted to insure the strongest build of the socket with proper trim lines. In Figure 9, there is illustrated the actual printout of the prosthesis, also referred to as definitive socket 28, that was illustrated in Figure 8, showing the four hole hookup 30 mounted on the definitive prosthetic socket 28. One such printer is sold under the trademark of Fortus which would be utilized in this process designed by Stratasys, 2 0 although other such printers are available. Preferably, the definitive socket 28 prosthesis would be printed out of a plastic material such as ULTEMS, or carbon fiber, or other material of equal or greater strength that may be known or developed in the future. In addition to the four hole hookup 30 as illustrated in Figure 9, Figure 10 illustrates a printout of the prosthesis 28 which has a plug fit adaptor 32, while in Figure 11, the prosthesis 28 is adapted with a plug fit 34 for receiving a pylon 16 or other type of adaptor. As stated earlier, by utilizing this process, the prosthetist is allowed to construct the prosthesis with prosthetic techniques for attachments such as: ---Four hole hook up with vacuum ---Four hole hook up that will support a drop lock ---Fitting of pylon or adapters ¨9¨ CA 02857634 2014-07-23 08928781CA ---Custom attachments (for certain feet/attachment) In the preferred method of the present invention it is foreseen that the socket will undergo sealing. In order to seal the socket the step will include adding a layer of epoxy to the exterior of the socket, which would help to add strength to the entire socket . The preferred type of epoxy is described as TC-1614 A/B epoxy, manufactured by BJB Enterprises, or an equivalent type of high solids content epoxy penetrating sealing and coating resin, or some other equivalent epoxy sealing product, which will be laminated over the socket. This will seal the socket in order to be able to use vacuum for proper fitting, if required. In addition to the Drawing Figures as discussed above, reference is made to Figure 12, a Flow Chart which succinctly depicts the steps in the process of the present invention making reference to the appropriated drawing Figures as discussed herein. Reference is now made to Figures 13 and 14 which provide the new methods of smoothing the 3D Printed Socket, as set forth in the Flow Chart of Figure 13, and the process of sealing the 3D Printed Socket following fabrication, as set forth in the Flow Chart of Figure 14. As seen in Figure 13, entitled The Smoothing Process, the method involves the steps that after trimming the fabricated 3D printed socket, the 3D printed socket will be placed in the Almco Model VB-2034 End Discharge Vibratory Finishing System, or an equivalent system on the market or to be invented. The 3D Printed Socket will then will vibrate for preferably 2 1/2 hours in the Alamo Finished System tumbler with the rpm's preferably between 1400 ¨ 1600 with 2 different types of ceramics, preferable Star and Cone, and also wear rods, which are known in the industry, for smoothing the Socket. Figure 14 is a flow chart which sets forth the sealing process after the 3-D Socket Has Been Smoothed in the manner described above. First, the 3D printed socket is cleaned of any leftover ceramic residue and dried. Next, an epoxy is applied to the socket, such as TC-1614, which is a high solids content epoxy penetrating sealing and coating resin system, manufactured by BJB Enterprises, or some other equivalent epoxy sealing product. If TC-1614 is used, Parts A & B of TC-1614 would be placed in an oven separately, together with the 3D printed socket, preferably at 120 F degrees , and preferably for 10 minutes. Next there is the step of mixing both parts A & B of TC-1614, ¨10¨ CA 02857634 2014-07-23 08928781CA then applying it to the 3D printed socket with a foam brush inside and outside of the socket. The 3D printed socket is then placed back into the oven for preferably 10 minutes. Next the 3D printed socket will then be removed from the oven and wiped down inside and outside to remove residual epoxy with a fabric, such as a lint free paper towel. The 3D printed socket is then placed back into oven for preferably 2 hours, with the temperature remaining at preferably 120 F degrees at all times during the process. Following these steps, the 3D Printed socket can then be removed for assembly. All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise. PARTS LIST DESCRIPTION NUMBER Modified mold 10 Pressure points 11 Test socket 12 Carving 13 Alignment system 15 Pylon 16 Prosthetic foot 17 Dots 20 Alignable system 21 Aligned prosthetic limb 22 Base 23 Inner portion 24 Outer fit 26 Merged image 27 Definitive socket 28 Four hole hookup 30 Plug Fit Adaptor 32 Plug fit 34 ¨11¨ CA 02857634 2014-07-23 . . s ' 08928781CA All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise. The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims. ¨12¨
Representative Drawing
A single figure which represents the drawing illustrating the invention.
Administrative Status

2024-08-01:As part of the Next Generation Patents (NGP) transition, the Canadian Patents Database (CPD) now contains a more detailed Event History, which replicates the Event Log of our new back-office solution.

Please note that "Inactive:" events refers to events no longer in use in our new back-office solution.

For a clearer understanding of the status of the application/patent presented on this page, the site Disclaimer , as well as the definitions for Patent , Event History , Maintenance Fee  and Payment History  should be consulted.

Event History

Description Date
Application Not Reinstated by Deadline 2020-08-31
Time Limit for Reversal Expired 2020-08-31
Inactive: COVID 19 - Deadline extended 2020-08-19
Inactive: COVID 19 - Deadline extended 2020-08-19
Inactive: COVID 19 - Deadline extended 2020-08-19
Inactive: COVID 19 - Deadline extended 2020-08-06
Inactive: COVID 19 - Deadline extended 2020-08-06
Inactive: COVID 19 - Deadline extended 2020-08-06
Inactive: COVID 19 - Deadline extended 2020-07-16
Inactive: COVID 19 - Deadline extended 2020-07-16
Inactive: COVID 19 - Deadline extended 2020-07-16
Common Representative Appointed 2019-10-30
Common Representative Appointed 2019-10-30
Deemed Abandoned - Failure to Respond to Maintenance Fee Notice 2019-07-23
Inactive: Abandon-RFE+Late fee unpaid-Correspondence sent 2019-07-23
Change of Address or Method of Correspondence Request Received 2018-01-10
Inactive: IPC deactivated 2017-09-16
Inactive: First IPC assigned 2017-01-01
Inactive: IPC assigned 2017-01-01
Inactive: IPC expired 2017-01-01
Inactive: Cover page published 2015-02-02
Application Published (Open to Public Inspection) 2015-01-23
Inactive: Filing certificate - No RFE (bilingual) 2014-08-06
Inactive: First IPC assigned 2014-07-29
Inactive: IPC assigned 2014-07-29
Inactive: IPC assigned 2014-07-28
Application Received - Regular National 2014-07-25
Inactive: Pre-classification 2014-07-23
Inactive: QC images - Scanning 2014-07-23

Abandonment History

Abandonment Date Reason Reinstatement Date
2019-07-23

Maintenance Fee

The last payment was received on 2018-07-03

Note : If the full payment has not been received on or before the date indicated, a further fee may be required which may be one of the following

  • the reinstatement fee;
  • the late payment fee; or
  • additional fee to reverse deemed expiry.

Patent fees are adjusted on the 1st of January every year. The amounts above are the current amounts if received by December 31 of the current year.
Please refer to the CIPO Patent Fees web page to see all current fee amounts.

Fee History

Fee Type Anniversary Year Due Date Paid Date
Application fee - standard 2014-07-23
MF (application, 2nd anniv.) - standard 02 2016-07-25 2016-07-20
MF (application, 3rd anniv.) - standard 03 2017-07-24 2017-07-14
MF (application, 4th anniv.) - standard 04 2018-07-23 2018-07-03
Owners on Record

Note: Records showing the ownership history in alphabetical order.

Current Owners on Record
WILLIAM STRATFORD LAYMAN
W. BRIAN LAYMAN
Past Owners on Record
None
Past Owners that do not appear in the "Owners on Record" listing will appear in other documentation within the application.
Documents

To view selected files, please enter reCAPTCHA code :



To view images, click a link in the Document Description column. To download the documents, select one or more checkboxes in the first column and then click the "Download Selected in PDF format (Zip Archive)" or the "Download Selected as Single PDF" button.

List of published and non-published patent-specific documents on the CPD .

If you have any difficulty accessing content, you can call the Client Service Centre at 1-866-997-1936 or send them an e-mail at CIPO Client Service Centre.


Document
Description 
Date
(yyyy-mm-dd) 
Number of pages   Size of Image (KB) 
Description 2014-07-22 12 546
Abstract 2014-07-22 1 39
Claims 2014-07-22 3 114
Drawings 2014-07-22 9 274
Representative drawing 2014-12-28 1 4
Filing Certificate 2014-08-05 1 179
Reminder of maintenance fee due 2016-03-23 1 111
Reminder - Request for Examination 2019-03-25 1 116
Courtesy - Abandonment Letter (Request for Examination) 2019-09-02 1 166
Courtesy - Abandonment Letter (Maintenance Fee) 2019-09-02 1 174